
Carnegie Mellon University
Software Engineering Institute

The Year 2000 Problem:
Issues and Implications
Dennis B. Smith
Hausi A. Müller
Scott R. Tilley
April 1997

19970523 131

TECHNICAL REPORT
CMU/SEI-97-TR-002

ESC-TR-97-002

Approved far public ratecm*
Dtotributtan UnHmltwt

DTIC QUALITY INSPECTED 1

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-97-TR-002

ESC-TR-97-002
Apri! 1997

The Year 2000 Problem: Issues and Implications

Dennis B. Smith
Software Engineering Institute

Hausi A. Müller
University of Victoria

Scott R. Tilley
Software Engineering Institute

Reengineering Center

Product Line Systems

Unlimited distribution subject to the copyright

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1997 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative

works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Suite C201, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is

http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218. Phone: (703) 767-8274 or toll-free in the U.S. — 1-800 225-3842).

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents
Acknowledgments iii

1. Introduction 1

2. Problem Description 3

3. Planning Considerations 5

3.1 Awareness and Action Planning 5

3.2 Cost Estimation 5

3.3 Triage Planning 6

4. Core Technical Tasks 9

4.1 Develop a High-Level System Inventory 9

4.2 Develop an Impact Analysis 10

4.3 Plan the Remediation 11

4.4 Perform the Remediation 13

4.5 Test the Changes 14

4.6 Migrate to Production 15

5. Technology Gaps 17

5.1 High-Level Systems Inventory 17

5.2 Impact Analysis 17

5.3 Remediation 18

5.4 Test the Remediation 18

6. Requirements for a Coordinated Effort 19

6.1 Development of Awareness 19

6.2 Clearinghouses of Tools, Tool Evaluations, and Tool Vendors 19

6.3 Research Program for Development of Needed Tools 20

6.4 Parser Clearinghouse 20

6.5 Technology Transition Issues 21

6.6 Clearinghouse of Software Certification for Y2K Compliance 21

6.7 General Process Templates 21

6.8 Sharing of Lessons Learned and Case Studies 21

7. Conclusion 23

CMU/SEI-97-TR-002 \

Appendix A: Pointers to Resources 25

Appendix B: Interviews Conducted 27

References 29

CMU/SEI-97-TR-002

Acknowledgments
We wish to thank Shawn Bohner of MITRE-Tech, Mike Olsem of the Software Technology
Support Center (STSC), and Tom Driscoll of Formal Systems. They provided us with a
number of insights and generously shared their time by permitting us to interview them.

We also wish to thank Archie Andrews, John Bergey, Dave Carney, Paul Clements, Linda
Northrop, Doug Waugh and Nelson Weiderman of the Software Engineering Institute, Kenny
Wong of the University of Victoria, and John Salasin of DARPA who provided excellent
comments on earlier versions of this paper.

This work was supported in part by the U.S. Department of Defense.

CMU/SEI-97-TR-002

The Year 2000 Problem: Issues and Implications

Abstract: A lot of attention has recently focused on the possibility that a great
deal of software will fail at the turn of the century because of the way dates are
stored and processed by computer programs. Attitudes range from alarmist to
unconcerned regarding the magnitude and implications of the problem. This report
outlines the basic issues of the so-called "Year 2000" (Y2K) problem and
discusses some of its implications.

1. Introduction

This report is addressed to chief information officers (CIO), program managers, and project
leaders responsible for developing strategies to address the Y2K problem. It outlines the
basic issues and core technical tasks required for Y2K efforts, highlights the types of
technology available, and identifies some of the gaps in technology. Our findings are based
on a review of published literature, documentation available on the World Wide Web, and
interviews we conducted with individuals who have already been active in addressing Y2K
issues. The focus of this report is on issues and implications of the Y2K problem that are
broadly applicable to most organizations.

The next section provides a description of the Y2K problem. Section 3 presents important
planning issues that need to be addressed before a technical solution to the problem is
chosen. Section 4 discusses the core technical tasks that require attention. Section 5 identifies
the gaps in current technology related to the Y2K problem. Section 6 outlines the requirements
for a coordinated effort needed to solve the Y2K problem. The appendices provide pointers to
resources and a list of the individuals interviewed.

CMU/SEI-97-TR-002

CMU/SEI-97-TR-002

2. Problem Description

The crux of the Y2K problem is simple. The overwhelming base of installed legacy systems
have routinely stored and processed dates without a century indicator. Date fields are
typically stored in "MMDDYY" format, where "YY" represents the last two digits of a given
year. This type of two-digit date encoding will probably fail to recognize "00" as representing
the year 2000 and instead will erroneously interpret "00" as representing 1900, since the "19"
has been implicitly assumed. There is an additional problem that, contrary to popular belief,
2000 is a leap year based on the rule that it is divisible by 400 and this rule is not commonly

programmed into existing systems.

The date problem is crucial because dates are fundamental to the calculation of algorithms for
virtually every type of electronic support system, such as command and control, assembly
lines, interest and loan payments, invoices, airline reservations, and so on. Since computer
systems affect almost every aspect of modern life, it is apparent that the electronic world that
we take for granted could be severely crippled if the dates are not corrected.

Although the bulk of current attention is focused on the turn of the century, the problem can
actually manifest itself at various times. For example, credit card renewals and motor vehicle
license renewals are usually provided for several years, while systems dealing with bond
issues and life insurance policies have already faced the problem. In each application, it is
necessary to determine when the problem will first appear and develop plans to deal with it
before the first critical date.

The Y2K problem is urgent because it has a hard, non-negotiable deadline. Many
applications are at risk if the problems are not corrected before the application-specific critical
events. The problem is severe because of the following five reasons:

1. Pervasiveness. Dates are present in some form in every type of application, including
information systems, command and control systems, and weapons systems. They form
the basis of derived calculations for such data as age and amortization schedules. Dates
are also the basis for a number of sorting routines, error checks, validations, and logic for
terminating applications.

2. Idiosyncratic coding practices. Date fields have been coded and used
idiosyncratically by generations of programmers. Dates are sometimes hard-coded in
programs, passed as parameters, aliased, redefined through program algorithms, or hidden
in job control language. The identification of all date fields within a single application is a
difficult task. There is not a single approach that will automatically identify all instances of
dates without a large number of false positives or false negatives.

3. Poor maintenance and coding practices. It is well known that documentation often
becomes obsolete in legacy systems. This problem is compounded for older legacy
systems that were developed with far less discipline than current systems. Often the
original programmers and maintainers have moved on long ago. Even more discouraging
are our interview results suggesting that, for some organizations, up to 20% of their
source code may be inaccessible. In these cases, the source code will need to be rebuilt,
reengineered, or replaced.

4. Complexity of computer systems. Most existing applications depend on a number of

CMU/SEI-97-TR-002

support systems such as databases, networks, and telecommunication monitors. They
rely on commercial compilers and run on commercial operating systems, with specific
hardware platforms. The date problem needs to be handled correctly and consistently not
only within the application, but also within all the support systems and interfaces to which
it is connected.

5. Size of the legacy base. The sheer size of the installed base of legacy programs and
support software adds an additional dimension to the date problem. Worldwide, there are
literally billions of lines of legacy code, written in over two thousand languages, accessing
hundreds of databases, and running on an ever evolving variety of operating systems
and hardware platforms. Because it is necessary to make these changes for almost every
current system, the necessary corrections will require a concerted, if not heroic, effort.

These five factors interact to turn a conceptually straightforward task into an almost
insurmountable challenge. To address the problem successfully requires strong automated
support as well as substantial human intervention.

CMU/SEI-97-TR-002

3. Planning Considerations

Before choosing a technical solution to the Y2K problem, important planning issues need to be
addressed. The first is awareness: raising the Y2K problem to a sufficiently high management
level so that it gets attention. The second is estimating the cost of solving the Y2K at your
organization. The third is deciding which systems are critical to your business, and hence
deserve top priority, and which systems can be left unaltered for the time being.

3.1 Awareness and Action Planning

Raising awareness of the Y2K problem within your organization is an early critical success
factor. Although knowledge of the potential existence of the Y2K problem has been common
within software engineering circles since at least the 1970s, a number of organizations have
been slow in addressing the problem [CGRO 96, Cassell 97, Kappelman 96]. There are
various reasons why this is the case, such as

• the normal aversion to long-range planning

• the belief that the problem will occur on somebody else's watch

• a naive sense that it will not be severe within a particular organization

• an inability to scope the local impact and develop a plan to resolve the problem

It seems that high-level managers tend to underestimate the magnitude of the problem within
their own organizations, and they initially assume that a relatively low-intensity effort will
resolve it. In fact, the resolution of the problem requires an intensive and time-consuming effort
that is fully funded and supported.

A respondent from our interviews reported that he has offered to conduct a free pilot analysis
of a system, to determine the extent of the problem on a sample of a million lines of an
organization's code. In every case, the actual number of problematic lines of code has been
several orders of magnitude higher than the prior estimates made by the CIO of the
organization.

These experiences suggest that key critical success factors for addressing the problem
include

• early specific awareness of the impact of the problem within the organization

• early management awareness and involvement

• careful planning, estimation, and allocation of resources

3.2 Cost Estimation

Several broad, order-of-magnitude estimates have been made on the cost to fix the Y2K
problem. The Gartner Group [Cassell 97] estimates the worldwide cost to range from $300-

CMU/SEI-97-TR-002

$600 billion, at a rate of $1.10 per executable line of code (LOC). A study by MITRE
[Roberts 96] made higher per LOC estimates for the resolution of the problem within the US
Department of Defense, which has a greater percentage of embedded systems. This study
made estimates by type of system as follows:

1. ground and airborne radar systems: $2.02 to $8.52 per LOC

2. communications processing systems: $1.23 to $5.54 per LOC

3. C2 planning systems: $1.02 to $1.84 per LOC

4. logistics support systems: $1.02 to $1.39 per LOC

These estimates will obviously need to be refined as more organizations develop experience
in addressing the Y2K problem.

3.3 Triage Planning

For a number of organizations, it will not be possible to resolve the Y2K problem for all their
systems before the systems fail, either on 01/01/2000, or before that date, depending on the
application. In these cases, hard decisions will need to be made. Martin [Martin 97] and de
Jager [de Jager 96] recommend a triage approach that sets priorities for selecting which
systems to convert and save, and which to allow to fail.

As part of the initial plan, business goals and objectives need to be defined. Some of the
issues to be addressed from a business perspective include an estimation of the business
value of each system, an analysis of the risks and liabilities if the system would fail, and
plans and requirements for future enhancements, new business needs, and potential
replacement of existing systems.

*

In the triage approach, mission-critical systems that are not slated for immediate replacement
need to be converted regardless of the cost. Systems of low strategic importance may be
allowed to fail if resources are unavailable. Decisions can be made on which medium-
importance systems to convert. These decisions can be based on business value, cost,
difficulty of conversion, technical risks, resources available, and time remaining. These factors
need to be revisited frequently to track the progress of Y2K projects and to reallocate
resources to account for current progress and risks. This approach enables rational decision
making as constraints increase.

For systems that are not to be converted, contingency plans need to be developed. These
plans develop an assessment of the functionality of the system, its business uses,
interfaces, and financial, technical and legal impact. Options need to be developed for working
around the system. Plans also need to be developed for the eventual conversion or
redevelopment of the system, as resources become available in the future.

CMU/SEI-97-TR-002

The systems that are to be converted require remediation planning. The remediation plans
allocate resources to the task, and develop a schedule for the major technical tasks required.
The schedule needs to be monitored closely because slippage can have serious impact on
other Y2K conversion projects.

CMU/SEI-97-TR-002

CMU/SEI-97-TR-002

4. Core Technical Tasks

A number of groups have developed a baseline identification of the phases and technical
tasks required to resolve the Y2K problem [Bohner 96, Martin 97, IBM 96, STSC] There is an
overall commonality in the treatment of the Y2K problem by any organization. However, a
Y2K conversion effort can be analyzed from a number of different perspectives—for example

• focusing on the definition of the process for addressing the Y2K problem [Bohner 96]

• evaluating tools and serving as technical advisors [STSC])

• developing data for costs, analyses of the major issues, and a tools catalog [IBM 96,
STSC, Martin 97]

• developing a database for Y2K compliance [DISA 97]

We have chosen to focus on a set of six core technical tasks, including a high-level
description of the technical issues, the type of currently available technology, and gaps in
technology. These tasks are the following:

1. Develop a high-level system inventory.

2. Develop an impact analysis.

3. Plan the remediation.

4. Perform the remediation.

5. Test the changes.

6. Migrate to production.

4.1 Develop a High-Level System Inventory

Inventory or portfolio analysis is a critical and often surprisingly difficult step for a Y2K
migration project. Inventory analysis includes identification of the following:

• applications and data sets of the organization

• the object code and libraries used to build these applications

• the source code used to build the object code and libraries

• databases and data files used to generate the data sets

• scripts and command files for building applications and data sets

• parameter, set up and initialization files (e.g., for sorting utilities)

• corporate naming convention policies and plan templates

• other auxiliary and ancillary files (e.g., screen maps)

To complicate the task, portfolios usually include multiple operational versions of both code
and data. Having a state of the art configuration management (CM) system eases inventory
analysis considerably. Identifying source files through a CM system is usually
straightforward. However, it can be surprisingly difficult to identify the exact source code that

CMU/SEI-97-TR-002

belongs to a particular application. The object files and libraries can also be readily identified,
but locating the associated source files can be quite difficult.

Identifying the source for a library that was not produced in-house can also present problems.
The manufacturers of the libraries regularly produce new releases, but in a number of cases,
organizations have selectively installed releases. Tracking down older versions is difficult. In
addition, migrating to the latest version of a software product can require changes in the
operating environment in addition to the specific Y2K changes. As noted above, source code
may be missing for up to 20% of applications.

The vendors for commercial-off-the-shelf (COTS) products might not provide source code
and only guarantee Y2K compliance for the latest version. Data sets are usually not included
in the configuration management. In addition, any code from an outside vendor that has either
gone out of business or no longer supports the software presents a special problem that
needs to be addressed.

A further complicating factor is that not all applications are under CM control. As distributed
systems, client/server systems, decision support systems, embedded systems, and
standalone applications have developed over the past decade, control by the central
organization has decreased. Moreover, the networks, support software, database systems,
and operating systems all have their own set of different releases, creating a potentially
complex set of interactions. Since the Y2K problem is pervasive, all applications need to be
considered.

The high-level inventory analysis can take from three to six months. The next core task,
impact analysis, develops a detailed fine-grained analysis. The planning estimates will need
to be further refined after the detailed impact analysis is completed.

4.2 Develop an Impact Analysis

The impact analysis task determines in detail where dates exist in a system, which modules
and statements are affected, and major critical paths. Some applications may contain between
40 and 50 different date formats. Often as much as 10% of the source code contains Y2K
defects and must therefore be changed. Therefore, to locate and correct defects using data-
and control-flow analysis in million-line systems, automation is the key to eventually
successful remediation.

In preparation for impact analysis, the source code needs to be parsed and represented,
preferably, in a language-independent form. A well-known reverse engineering tool,
Reasoning System's Software Refinery has developed a technique for representing code as
an abstract syntax tree. This technique enables code from a number of different languages to
be analyzed in a common way. The use of a common abstract syntax tree also facilitates
transformations, and enables impact analysis tools to locate Y2K defects.

10 CMU/SEI-97-TR-002

Date fields that occur in different formats can be identified with standard pattern matching tools
such as the UNIX grep facility (albeit with limited success). Pattern matching provides
analysis of data dictionaries and declaration statements for instances of dates, as well as
searches within the code for selected keywords, such as year, month, age, and policy-period.

Pattern matching tools provide general rules for detecting date fields, date literals, and source
code that manipulates or calculates dates. However, these rules need to be adjusted for each
organization, since each evolves its own naming conventions. The pattern matching activity
is by its nature an iterative process. Each organization needs to develop a library of naming
conventions and exclusions, storage conventions, types of problems encountered, false
positives and false negatives. In addition, typical parameters, such as age, time, and
expiration dates, should be included in the library.

Once patterns are found, a more detailed analysis is performed to focus on the ripple effects
of the dates, as well as to eliminate false positives. Slicing traces the uses of a data field
through the source code, Job Control Language (JCL) and databases. Forward slicing
determines the program text that is affected by a particular data field. For example, a forward
slice on the field date will find that fields such as age, policy expiration and current interest are
affected by it. Backward slicing focuses on the program text affecting a data field. Slicing can
find the associated statements that depend on a date field rather than just identify other fields.
For example, a backward slice on the field age will determine that both date of birth and current
date affect its value. Slicing requires tool support as well as a human intervention to make
decisions on the application-level semantics.

The output of this task is an identification of areas of the system that use dates, as well as
modules that are affected by dates. Strong visualization techniques to present the data can
aid in understanding of the Y2K impact as well as the correction of the defects.

4.3 Plan the Remediation

Once the magnitude of the problem is analyzed in detail, the next step is to develop a
strategy for remediation. The basic options are

1. expansion of the database to accommodate a century indicator

2. development of date "windows" that are processed differently depending on whether the
date is early or late in a century

3. compression of the date fields in the database

Although the most complete solution is to expand the database, it is also the most expensive
and time-consuming. A number of factors may suggest alternative solutions including time,
resources, future plans, estimated life span of the system, and relationship to other systems.
Therefore, the remediation approach needs to be carefully analyzed in terms of both technical
and business options.

The basic options are highlighted briefly below.

CMU/SEI-97-TR-002 11

4.3.1 Database Expansion

The expansion of the database involves changing the database records from a 2-digit year
"YY" to a 4-digit year "YYYY." As a result, the date February 1, 2000 would be stored (in
"YYYYMMDD" format) as "20000201," instead of as "000201" (in the currently typical
"YYMMDD" format). A secondary option would be to keep the current date fields, and to add a
century indicator as a separate field in the database.

The expansion of the database requires not only the conversion of the database itself, but
changes to all programs that reference dates in order to correctly use the new date format. It
will also require the development of a number of conversion programs to create the new
database format and convert existing records.

The database expansion option is complete and permanent. However, since it requires
database changes, changes to all existing date related programs, and the development of a
set of conversion programs, this option is the most costly. In addition, there may be a
negative impact on performance, as well as the need for expanded disk space. This is
usually not an option for archival data.

4.3.2 Windowing

The date window approach keeps the database unchanged with a 2-digit year indicator.
Dates are processed through logic that interprets the 2-digit years.

The windowing approach defines a 100-year window and specifies how dates in specific
intervals within that window are to be processed. In the simplest type of example, if an
application was developed in 1970, and the earliest possible relevant dates in the system
could occur in 1970, then the system would be programmed to assign the century "20" to
dates less than "70," and to assign the century "19" to dates greater than "70."

A "sliding" window allows the 100-year interval to advance according to a selected criterion.
For example, the window can advance each year to better enable processing of "age" data. A
"fixed" window uses a static 100-year period that does not change throughout the lifetime of
the application.

The windowing techniques enable the conversion of applications at a potentially lower cost
than database expansion. They also offer the potential of developing date modules that could
be called from within applications to process dates. However, windowing techniques are not
permanent and will provide future exposure to risk for long-lived applications. In addition, they
will not effectively handle data that span more than 100 years (such as age). To avoid data
integrity problems, there needs to be consistency throughout the organization on how dates
are handled using the windowing approaches.

12 CMU/SEI-97-TR-002

4.3.3 Field Compression

The compression approach packs 4-digit data into a 2-digit field. Compression enables the
use of the current database and current fields in the database. However, program changes
are still required to process the new format, and these changes will need to be applied
consistently. In addition, conversion programs will need to be developed to apply the
changed formatting. Once the changes are made, there may be data conversions at runtime,
with potential operational performance issues.

4.3.4 Remediation Strategy Decision Factors

The correct option within an organization requires consideration of technical, strategic and
business issues. It is important at this phase to perform a set of pilot remediations on a
representative sample of the code in order to get realistic data points for the effort required b y
different correction strategies. A detailed plan for making the corrections will derive from the
strategy. This plan may involve a hybrid of the database expansion, windowing, or
compression strategies outlined above.

Decisions also need to be made on whether to make the corrections on screens and reports,
and how to manage inter-operating converted and non-converted parts of systems. The
planning decisions need to include approaches for the conversion of JCL and any support
systems that interact with the application.

4.3.5 Compliance of Suppliers

Because most applications rely on supplier-developed operating systems, compilers, and
support software, it is necessary to monitor the progress of all suppliers in their own
remediation efforts/Four steps can be taken:

1. Compile a list of current supplier software, and relationship to all applications in an
organization's inventory.

2. Track the supplier's stated timetable and progress to ensure that software can be Y2K
compliant. A listing of a number of these efforts is kept by DISA [DISA 97].

3. Develop contingency plans and workarounds if suppliers do not meet critical schedules.

4. Test supplier software according to specific criteria. A checklist of issues for a number of
different types of supplier software, including operating systems, compilers, local area
networks and databases is provided by GTE [GTE 96].

4.4 Perform the Remediation

The recommended technical approach for making corrections is through automated
transformations. The analysis of patterns and programming cliches can result in the
development of a rule base for making the transformations automatically or semi-automatically.
Some tools can assist in the transformations for specific narrow domains, such as the

CMU/SEI-97-TR-002 13

programming languages COBOL or NATURAL. However, even in the most optimistic cases,
automated transformations will cover substantially less than 100% of the cases. The rest of
the corrections will then need to be made manually.

Some languages do not have automated tool support, and thus the entire set of
transformations will need to be done manually unless further tools become available. The
research agenda discussed below addresses areas of need for the development of additional
tools.

4.5 Test the Changes

Testing is the task that is currently least understood. When 10% of the source code of an
application is changed, testing is difficult, time-consuming and complex. With such a high
percentage of changes to the source code, it is hard to demonstrate that the functionality is
unchanged. A common estimate is that testing will require at least 50% of the effort for a Y2K
project. Standard unit testing, integration testing, system testing and acceptance testing will
be required for Y2K projects.

IBM [IBM 96] provides a framework for Y2K testing based on standard testing techniques.
This approach includes the following:

• Unit testing and integration testing that are forms of structural testing whose primary goal is
to locate errors created during remediation. These testing phases exercise all structures of
the system. They include operations testing of normal production scenarios, stress testing
of abnormal circumstances and volumes, and recovery testing after system failure.

• System testing and acceptance testing that are forms of functional testing whose primary
goal is to locate design errors and improper implementation of requirements. The functional
testing includes requirements testing, regression testing, error handling, manual support
testing, and interface testing.

For most systems, it is hard to test whether the software works properly for future dates.
Most databases do not contain dates past the year 2000. Injecting or simulating future dates
is an option but not trivial to implement since most systems have to be modified in place.
Moreover, verification of test runs with future dates have to be verified manually since there
are only historical datasets available against which the results of the future data tests can be
compared. IBM provides software packages for MVS that will intercept requests for the
system date and substitute a future test date (e.g., February 29, 2000). Organizations that
have change control processes, extensive regression test suites, and test harnesses in place
should be able to manage the risk involved in Y2K testing.

Test scenarios need to be specifically developed for Y2K conversions. Simple data types like
integers or dates are usually assumed to work properly and are not normally tested
extensively. Guidelines are not currently available on test predictions or a minimal test suite.

IBM also offers some guidelines for test scenarios [IBM 96] The components to be considered
include the following:

14 CMU/SEI-97-TR-002

•

Test processing cycles and functions that are activated on a regular basis. These include
daily, weekly, monthly and annual cycles, as well as automatic archiving and restart
functions.

Test special dates, such as 12/31/99, 01/01/00, 02/29/00, and 03/01/00.

Test time-sensitive data at critical dates.

There may or may not be enough excess computing resources to allow testing of all these
systems (e.g., during the remaining weekends before the Y2K deadline). An additional
complication to testing for the Y2K problem is that legacy systems often contain a number of
different versions of compilers and software. As a result, it may be difficult to get a clean set of
re-compiles and linkages. In the cases of older and potentially incompatible compilers and
support software, it may be useful to attempt to do a full recompilation before testing begins
to determine if a problem exists.

Little actual data is available on testing as applied to the Y2K problem since so few projects
have actually completed or published the results of their Y2K conversions. This is an area
that will require careful monitoring in the future.

4.6 Migrate to Production

To ensure continuous, safe, reliable, robust, and ready access to mission-critical functions and
information, it will be necessary to migrate in place. The objective is to maintain the running
system at all times and to perform the migration in small, incremental steps. The incremental
approach will control risk. If a step fails, only that step will need to be repeated. The migration
strategy needs to be developed incrementally to transition the corrected systems in a phased
manner.

During migration, a number of tasks need to be performed, including

development of procedures for conversion of data, either automatically or manually

development of new programs for screens or reports that require the new date formats

acquisition and installation of required storage devices and other hardware and software
that will be needed for the conversion

development of new job control programs and parameter files

updating of all documentation

backing up of old data files and load modules

conducting parallel testing of new and old system components

transferring of new components into a testing environment and placing into production on
an incremental basis

monitoring of system performance with each new increment

CMU/SEI-97-TR-002 15

16 CMU/SEI-97-TR-002

5. Technology Gaps

The discussion of the technical steps involved in addressing the Y2K problem leads to an
identification of shortcomings in current technology ("technology gaps")—which adds to the
challenge of tracking the Y2K problem. These gaps are discussed below in terms of the core
technical tasks discussed above.

5.1 High-Level Systems Inventory

The development of a systems inventory is particularly difficult when a CM system is not
used. While operating systems provide commands to facilitate the performance of the
individual steps needed, there are no automatic and intelligent tools for a complete inventory
analysis. A type of tool that could be particularly useful would be "crawlers" for specific
operating systems. A "crawler" would analyze an entire operating system, identify all the
executables, construct an inverse building map, and locate source files. The information could
be gleaned by carefully investigating the file systems using version and library tags, scripts,
makefiles, installation logs or README files, directory structures, and documentation. This
type of tool could automate much of the systems inventory process. Without such a tool,
manually creating a system inventory is an error-prone process.

5.2 Impact Analysis

A key to understanding code successfully and eventually to performing remediation on the
code is parsing. While parser technology is relatively mature, it is somewhat uneven.
Technology is needed to address the following needs:

• a standard intermediate language, such as that represented by Software Refinery, to
serve as an interface between parser and impact-analysis tools, that is sufficiently
detailed to handle Y2K analyses and conversions

• a grammar and a parser for every variant of a programming language

• parser generators for every grammar

After parsing the code, the analysis of date impacts can be aided through tools such as the
following:

• a catalog of all known date formats and manipulations occurring in practice and their actual
patterns in various languages

• pattern matching algorithms for locating date processing

• forward and backward impact analysis based on slicing technology

• assessment and evaluation of tools, algorithms, grammars, and catalogs

CMU/SEI-97-TR-002 17

5.3 Remediation

To provide remediation for the Y2K problem, the following types of technology are needed:

• a catalog of algorithms for widening date formats in various languages

• a catalog of algorithms for windowing schemes in various languages

• a catalog of algorithms for date field compression in various languages

5.4 Test the Remediation

In the areas of inventory analysis, impact analysis, and remediation, tools have a significant
impact on the Y2K problem. However, these phases only constitute about 30% of the overall
life cycle of a Y2K migration project. One of the major goals should be automating the testing
phase that typically contributes at least 50% toward the costs of a Y2K project. Test
scenarios and coverage guidelines geared to Y2K projects are needed as projects begin to
progress to the testing phase. Testing is especially important for mission-critical systems.

18 CMU/SEI-97-TR-002

6. Requirements for a Coordinated Effort

Because of the time-critical urgency of the problem, it is important to develop a national
program for the mobilization of resources. Many organizations are beginning to go through the
discovery process. It will be important to provide lessons learned, templates, and transfer of
knowledge in order to avoid re-inventing the same wheel. Coordination is required both at an

organizational level and at a national level.

The components of a national agenda are derived through a combination of the technology
gaps described in the previous section, as well as the management infrastructure and support
that is required. This agenda needs to include

• development of awareness

• clearinghouses of tools, tool evaluations, and tool vendors

• research program for development of needed tools

• clearinghouse of software certification for Y2K compliance

• sharing of lessons learned and case studies

• general process templates

These components are each discussed briefly below.

6.1 Development of Awareness

One major theme is the difficulty in getting decision-makers to focus specific resources on
addressing the Y2K problem [Martin 97, Kappelman 96, Cassell 97, Ragland 96]. It is
important to disseminate information on the magnitude of the problem, its pervasiveness, the
implications of failure to address the problem, and the fact that the solution to the problem is
difficult.

6.2 Clearinghouses of Tools, Tool Evaluations, and Tool
Vendors

A number of tools exist to address various aspects of the Y2K problem. Most of these apply
to common languages for MIS problems, such as COBOL. However, there is little objective
information on the functions or usefulness of tools. Frameworks are needed to categorize tools,
and evaluations of their effectiveness and limitations are needed.

The Software Technology Support Center (STSC) has begun to address this problem in
two ways: 1) an inventory of Y2K tools, and 2) an evaluation of several specific tools
relevant for embedded systems (available in second quarter of 1997). In addition, MITRE has
begun a tool clearinghouse, and disseminates information on its web page.

CMU/SEI-97-TR-002 19

A well-funded effort to classify technology and tool functionality and to evaluate effectiveness
is needed as new organizations launch Y2K projects and require guidance.

Numerous vendors have emerged to assist with the Y2K problem. Currently, lists of vendors
are available from several web pages. However, the information about each vendor is
derived from that vendor's publicity materials. It would be useful to develop a set of
categories of specialization, by phase of lifecycle, languages and domains, as well as depth
of experience and qualifications. Such a categorization would help potential customers to
compare apples to apples and to make intelligent decisions.

6.3 Research Program for Development of Needed Tools

There is a need to mobilize and focus the research community. Tools are required in a wide

number of areas, including the following:

operating system crawlers

parsers (by language)

common program and intermediate representations

transformation tools (by language and operating system)

reusable algorithms for locating and correcting date problems

static analysis tools

testing tools

regression test suite for date items

The first requirement is a careful inventory of what exists and where the gaps are. This would
enable priorities to be set on the most significant gaps and it could guide research and policy
decisions. A second requirement is the delivery and deployment of these research prototypes
in an expedient manner.

6.4 Parser Clearinghouse

Because parser technology is central to understanding a system, one specific function of the
research program could be the coordination of research on parser technology. While there are
some clearinghouses of grammars for programming languages, there are no such facilities to
pick up a parser for a particular language. Given a grammar for a particular programming
language, a parser generator can be used to produce a parser automatically. Parser
generators have been around for a number of years. However, the parsers produced b y
these generators provide output in their own format that is not usually compatible with impact
analysis tools. A parser clearinghouse would provide a parser for a given variant of a
programming language producing a common, language-independent intermediate
representation that could then be used by language-independent impact analysis tools.

20 CMU/SEI-97-TR-002

6.5 Technology Transition Issues

As important as the development of tools is, it will be equally important to pay attention to
issues of usability and transition. Transitioning of technology from a research prototype to
routine use within organizations is known to be difficult. In addition, it will be important to
transition expertise across organizational boundaries. Although this type of transition is
unprecedented and difficult, it is essential for solving the problem.

6.6 Clearinghouse of Software Certification for Y2K
Compliance

As mentioned above, one aspect of the Y2K problem concerns the use of a large number of
COTS software and complex interdependences to applications software. It will be critical as
the Y2K approaches to have an inventory of plans of vendors for Y2K compliance as well as
certification to verify their compliance. DISA has begun such an effort and maintains a current
list on its Web page.

6.7 General Process Templates

The overall process for addressing the Y2K problem is fairly common and universal.
However, the first few organizations have spent a significant amount of time developing an
overall process for solving the problem. MITRE-Tech has now developed generalized
process templates [Bohner 96] that could be used by new organizations as initial guides for
the process. These templates can be updated periodically as more organizations use them
and provide feedback on them.

6.8 Sharing of Lessons Learned and Case Studies

Virtually every organization will need to address the Y2K issue for the majority of its systems.
Since there is significant commonality in languages, domains, support systems, and operating
systems, there can be common technical and management approaches and common lessons
learned.

The sharing of lessons learned needs to be done both within organizations and between
organizations. A structure similar to a Software Engineering Process Group (SEPG) can be
created within an organization. This group would coordinate the sharing of tools, templates,
processes and other reusable assets for solving the Y2K problem within an organization. It
would also coordinate ideas and solutions with outside organizations to enable the greatest
possible leveraging of common experiences in addressing a problem that is much larger than
any single organization.

CMU/SEI-97-TR-002 21

22 CMU/SEI-97-TR-002

7. Conclusion

This report has summarized the overall issues and implications of the Y2K problem. The
problem is pervasive and will affect practically all software in all organizations. Failure to
address the problem can have severe consequences. We identified six core technical tasks
required in addressing the problem. In our analysis we identified gaps in current technology,
as well as the components of an overall strategy to address the issue.

CMU/SEI-97-TR-002 23

24 CMU/SEI-97-TR-002

Appendix A: Pointers to Resources
General Y2K web sites:

SEI: http://www.sei.cmu.edu/~reengineering

STSC: http://www.stsc.hill.af.miI/RENG/index.html#2000

MITRE: http://www.mitre.org/research/y2k

ISA: http://www.mitre.org/research/cots/COMPLIANCE_CAT.html

IBM: http://www.software.ibm.com/year2000/

BCS: http://www.bcs.org.uk/millen.htm

GTE: http://www.mitre.org/research/cots/GTE_CRITERIA.html

Peter de Jager: http://www.year2000.com

Parsing resource pages and research projects:

• Compiler construction tools: http://www.first.gmd.de/cogent/catalog

• Lexical analysis tools: http://www.cogs.susx.ac.uk/users/adrianh/lexical/

• C++ program analyzers: http://www.teleport.com/~smeyers/ddjpaper1.html

• LSME: http://www.cs.ubc.ca/spider/murphy/papers/lsme/tosem.html

• Software Refinery: http://www.reasoning.com

Slicing and impact analysis resource pages and research projects:

• NIST: http://www.ncsl.nist.gov/~jimmy/unravel.html

• U Wisconsin: http://www.cs.wisc.edu/wpis/html/

• Slicing Internet resources: http://www.unl.ac.uk/~mark/slicing.html

• Program slicing: http://www/cs.tu-bs.de/~krinke/Slicing/slicing.html

CMU/SEI-97-TR-002 25

26 CMU/SEI-97-TR-002

Appendix B: Interviews Conducted

A set of interviews was conducted in conjunction with the International Conference on Software
Maintenance (ICSM) from November 4-8, 1996. This conference attracts researchers and
practitioners in the filed of software maintenance. A number of Y2K talks and panels were
conducted.

We selected the following three individuals to interview in depth:

• Shawn Bohner, MITRE-Tech

• Tom Driscoll, Formal Systems

• Mike Olsem, STSC

We interviewed these people because they had extensive experience in dealing with several
organizations on the Y2K problem. We were able to capture insights on the problem from these
knowledgeable individuals who had practical experience spanning a range of different
organizations. Mike Olsem has been a leader in helping to coordinate the U.S. Air Force's efforts
to resolve the Y2K problem. In that capacity he has evaluated a number of Y2K tools for the Air
Force. Shawn Bohner has worked with a number of civilian U.S. government agencies and has
developed general Y2K process templates. Tom Driscoll has developed a tool to analyze and
remediate Y2K problems for the NATURAL language. Although this is a relatively small domain, he
was able to provide general insights on the way in which corporations are dealing with the
problem.

The interviews started with the individual's perspective of the major issues and problems
concerning the Y2K issue. They then focused on the individual's involvement with Y2K efforts.
We asked for their assessments of the current state of technology, gaps in the current
technology, steps for addressing the problem by an organization, and recommendations for an
overall strategy to deal with the problem.

CMU7SEI-97-TR-002 27

28 CMU/SEI-97-TR-002

References

Bohner 96

Cassell 97

CGRO 96

de Jager 96

DISA 97

GTE 96

IBM 96

Kappelman 96

Martin 97

Bohner, S. "Examining Year 2000 Data Challenges from the Maintenance
Perspective." Proceedings, International Conference on Software
Maintenance. Monterey, Ca., November 4-8,1996. Los Alamitos, Ca.:
IEEE Computer Society Press, 1996.

Cassell, J.; Schick, K.; Hall, B.; & Phelps, J. "Management Edge: Year
2000 - Top View." Stamford, Ct.: The Gartner Group,1997.

Committee on Government Reform and Oversight. "Year 2000 Computer
Software Conversion: Summary of Oversight Findings and
Recommendations." U.S. Government Printing Office, Washington, DC,
1996.

de Jager, P. "Systematic Triage." American Programmer 9, 2 (February
1996): 12-15.

DISA. DISA COTS Product Compliance Catalog [online].
Available WWW:
<URL: http://www.mitre.org/research/cots/COMPLIANCE_CAT.html>
(1997).

GTE. Proposed Criteria for "Century Compliance" [online]. Available
WWW: <URL:
http://www.mitre.org/research/cots/GTE_CRITERIA.html> (1996).

IBM. "The Year 2000 and 2-Digit Dates: A Guide for Planning and
Implementation." IBM Report GC28-1251-00, Poughkeepsie, N.Y.: IBM
Corp., 1996.

Kappelman, Leon A., ed. Solving the Year 2000 Computer Date
Problem: A Guide and Resource Directory. Chicago, III.: Society for
Information Management (SIM) International, Year 2000 Working Group,
1996.

Martin, R. "Dealing with Dates: Solutions for the Year 2000." Computer
30, 3 (March 1997): 44-51.

CMU/SEI-97-TR-002 29

Ragland 96 Ragland, B. Are You Ready for the 21st Century? [online]. Available
WWW:
<URL: http://www.stsc.hill.af.mil/CrossTalk/1996/mar/AreYouRe.html>
(1996).

Roberts 96 Roberts, J. Cost Estimation for Year 2000 Efforts [online]. Available
WWW:
<URL: http://www.mitre.org/research/y2k/docs/BRIEF.html> (1996).

STSC Software Technology Support Center. Year 2000 Stand Alone Tools
[online]. Available WWW:
<URL: http://www.stsc.hill.af.mil/RENG/y2ktools.html>.

30 CMU/SEI-97-TR-002

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-01B8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budoet. Paperwork Reduction Proiect (0704-0188), Washington. DC 20503.

1 . AGENCY USE ONLY (LEAVE BLANK) 2 . REPORT DATE

April 1997

3 . REPORT TYPE AND DATES COVERED

Final
4 . TITLE AND SUBTITLE

The Year 2000 Problem: Issues and Implications

5 . FUNDING NUMBERS

C —F19628-95-C-0003

6. AUTHOR(S)

Dennis B. Smith
Hausi A. Müller
Scott R. Tilley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8 . PERFORMING ORGANIZATION

REPORT NUMBER

CMU/SEI-97-TR-002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

1 0 . SPONSORING/MONITORING

AGENCY REPORT NUMBER

ESC-TR-97-002

1 1 . SUPPLEMENTARY NOTES

12. A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12.B DISTRIBUTION CODE

1 3 . ABSTRACT (MAXIMUM 200 WORDS)

A lot of attention has recently focused on the possibility that a great deal of software will fail at the turn of the century
because of the way dates are stored and processed by computer programs. Attitudes range from alarmist to
unconcerned regarding the magnitude and implications of the problem. This report outlines the basic issues of the
so-called "Year 2000" (Y2K) problem and discusses some of its implications.

14. SUBJECT TERMS

legacy systems, reenqineerinq, year 2000 (Y2K)

1 5 . NUMBER OF PAGES

30 pp.
16. PRICE CODE

1 7 . SECURITY CLASSIFICATION

OF REPORT

1 8 . SECURITY CLASSIFICATION

OF THIS PAGE

1 9 . SECURITY CLASSIFICATION

OF ABSTRACT

2 0 . LIMITATION OF ABSTRACT

